Kapitel 1

Maskinleering

AMANDA LE
ANDREAS RAASKOV MADSEN

1 Introduktion

Man kan nogle gange blive treet af at kode og ende med at teenke: “Kunne
computeren ikke selv kode det hele for mig?"”, og sa er det jo godt, at der
findes maskinleering, da man med maskinlaering kan leere computeren at ko-
de dine funktioner og algoritmer for dig, se eksempelvis: GitHub Copilot.
Men hvordan virker det, og hvad er maskinleering egentlig?

Maskinleering deekker over en reekke metoder, hvorved computeren selv kan
leere at finde mgnstre i store maengder data. Dette kan benyttes til bade
klassifikation; eksempelvis at klassificere om en person har en bestemt syg-
dom eller ej, og til at lave forudsigelser om fremtiden; sasom hvordan vejret
kommer til at se ud i morgen.

Udgangspunktet for maskinleering er data - en rigtig stor meengde data -
og derfor er maskinleering ogsa kendt som datavidenskab. I medierne er
maskinleering ofte kendt som kunstig intelligens (AI), og selvom der findes
kunstig intelligens, som ikke bygger pa maskinleering, sa har de sidste 20 ars
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fremskridt i kunstig intelligens hovedsageligt veeret inden for maskinleering.

I dette forlgb vil vi kigge pa de to hovedkategorier inden for maskinlee-
ring: Supervised maskinleering og unsupervised maskinlaering. Vi vil mgde
eksempler pa kendte algoritmer, som bliver benyttet inden for begge hoved-
kategorier og vi vil kigge pa teorien, der danner grundlaget for algoritmerne.

THIS 1S YOUR MACHINE LEARNING SYSTETM?

YOP! YOU POUR THE DATA INTO THIS BIG
PILE OF LINEAR ALGEBRA, THEN COLLECT
THE ANSWERS ON THE OTHER SIDE.

WHAT IF THE ANSWERS ARE WRONG? J

JUST STIR THE PILE UNTIL
THEY START LOOKING RIGHT

Figur 1.1: XKCD 1838
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2 Data

Maskinlaering er en underdel af kunstig intelligens. Kunstig intelligens er
ofte kendt som datavidenskab, da det ofte handler mere om data end om
algoritmen. Datavidenskabsfolk har et ordsprog: “Det er bedre at have et
godt datasaet og en darlig algoritme, end det er at have en god algoritme
og et darligt dataseet”. Data kan i sig selv beskrives som alt, der kan kvan-
tificeres med tal. Eftersom stort set alt kan beskrives med tal, sa gor det
datavidenskab til en videnskabelig disciplin, der kan have opgaver fra alle
andre videnskaber.

Et af de dataseet, som vi vil arbejde med her pa campen, indeholder nee-
ringsdata fra mad serveret pa fastfoodkseden Subway’s restauranter. Data-
seettet indeholder mange forskellige attributter, og vi vil fokusere pa data
om mengden af kulhydrater og meengden af kalorier. Arsagen til, at vi fo-
kuserer pa disse to attributter, er, at hver attribut kan ses som en dimension
og for at give en intuitiv ide af, hvordan algoritmen virker, sa vil vi lave 2D
plots. Hvis algoritmen er ordentligt implementeret, sa kan den finde sam-
menhaeng i data med flere dimensioner. Dette er en fordel, da man med data
i forhold til mennesker typisk arbejder med data i mange dimensioner.

Det andet dataszet, som vi skal kigge pa, hedder MNIST og dette datasaet
bestar af billeder af handskrevne tal.

For at kunne lave maskinleering pa billeder, sa skal vi forsta, hvordan,
billeder bliver repraesenteret som data i en computer. Billeder i MNIST
datasaettet har 28X28 pixels og er i sort-hvid. Af denne grund kan et MNIST
billede blive repraesenteret med en liste af 784 tal mellem 0 og 255, hvor 0
betyder, at en pixel er helt hvid og 255 betyder, at den er helt sort.

3 Intro til biblioteker

Nar man skriver kode, sa kan man nogle gange have brug for funktioner,
der ikke er en del af den normale Python pakke. I stedet for at skrive disse
funktioner fra bunden, sd kan man importere andres kode og benytte dem
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Figur 1.2: Eksempler af billeder i MNIST dataseaettet

i sin egen kode. Dette kaldes biblioteker. De mange ekstra biblioteker er én
af de stgrste fordele ved at bruge Python.

Numpy

Det mest brugte bibliotek, nar man laver datavidenskab, kaldes numpy. numpy
indeholder og giver en masse masse matematiske funktioner, som man ogsa
ville kunne finde i ethvert andet CAS veerktgj. Maden man importerer numpy
er via kommandoen:

import numpy as np
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“as np” sgrger for, at man kan benytte forkortelsen np som et synonym
for numpy. For at fa adgang til funktionerne i numpy behgver man eksempelvis
kun at skrive:

np.function ()

i stedet for at skrive: numpy.function() hele tiden.
Derudover introducerer numpy en seerlig type liste, som man kan anvende til
lineaer algebra. Listen kaldes et numpy array. Et numpy array adskiller sig
fra en almindelig Python liste ved, at et numpy array fungerer ligesom en
matematisk matrix.
En matrix er et rektanguleert skema af tal. Forskellen pa et numpy array og
en almindelig liste i Python kan ses i folgende eksempel:

Eksempel
[1,2]%2 — [1,2,1,2]
np.array([1,2])*2 — np.array([2,4])

unfML

Vi har lavet nogle hjelpefunktioner saledes, at i hurtigt kan g& i gang med
at lave maskinleering. Funktionerne ligger i biblioteket unfML og biblioteket
kan importeres pa fglgende made:

import unfML

Dataseettet til maskinleeringsopgaverne kan nu fas ved hjalp af funktio-
nen unfML.data(opgavenummer). For unsupervised learning fas X, for su-
pervised fas X og Y. For at evaluere din model benyttes kommandoen:
unfML.eval (opgavenummer, modeloutput) eller unfML.plot (opgavenummer,
modeloutput) for en grafisk illustration. Modellens output vil for K-means
veaere en liste K centrums og for perceptronen vil det veere W.
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4 Unsupervised maskinlaering og K-means
algoritme

Unsupervised maskinlaering deekker over en rackke metoder til at finde mgn-
stre i data. Metoderne bliver givet en raekke observationer uden at give et
label, der siger, hvad det rigtige svar er, da vi ikke ngdvendigvis pa forhand
ved, hvad det er vi leder efter. Typiske opgaver i unsupervised maskinlae-
ring er; at klassificere data i forskellige grupper (clustering), finde afvigelser
(outlier detection) eller finde sammenheenge, sdsom hvis en person kgber
havregryn, sa kgber de typisk ogsa meelk (association mining). Vi vil foku-
sere pa en algoritme, K-means, som benyttes til klassificering.

K-means

K-means er en simpel metode til at finde klynger i store meengder data. Her
kan en klynge beskrives, som gruppe datapunkter, der ligger teet pa hinan-
den og derfor hgrer sammen. Algoritmen starter med at veelge K tilfeeldige
punkter som centrum for klynger; derefter kgrer algoritmen i et loop, som
har to trin.

e Trin 1: K klynger udveelges; for hvert datapunkt udregnes den eukli-
deafstand (Pythagoras’ leereseetning) til ethvert K centrum. Derefter
indseetter man punktet i den klynge, hvis centrum punktet er teettest

pA.

e Trin 2: For hver klynge udregnes et nyt centrum ved at tage middel-
veerdien af alle punkter.

K-means konvergerer, hvilket vil sige, at pa et tidspunkt sendrer resul-
tatet sig ikke leengere, selvom man fortsesetter loopet. Nar dette sker kan
algoritmen stoppes, og de resulterende klynger er resultatet af klassificerin-
gen.



4. UNSUPERVISED MASKINLARING OG K-MEANS ALGORITME 7

Algorithm 1 K-means

X = load data
K = antal klustere

punkter,demensioner—np.shape(x)
Center = np.array(random.sample(X,K)) #tilfeeldige valgte punkter
SidsteCenter = np.empty((K,demensioner))
while Center != SidsteCenter do
klusters=| || for _ in range(K)]
SidsteCenter = Center.copy/()
for p in range(punkter) do
afstand=|]|
for k in range(K) do
afstand.append(np.sqrt(np.sum((X[p|-center|k]|)**2)))
end for
klusters|np.argmin(afstand)|.append(X|p])
end for
for k in range(K) do
center|k,:]=np.mean(klusters|k|,axis=0)

Opgave 1.1

Implementér K-means algoritmen pa Subway datassettet, og plot resultatet
fra 3 klynger. For bedre forstaelse og debugging kan man plotte datasaettet
under hver iteration. Efter 3 klynger er plottet; giv plot funktionen argu-
mentet sande="True for at se, hvilke typer mad, der gemmer sig i datasaettet.

Opgave 1.2

Fa din K-means algoritme til at kore pa MNIST datasaettet med 10 klynger.
Plot de 10 klynger.

Opgave 1.3

Teori: Snak med din sidemand om fglgende:
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e Giver K-means det samme svar hver gang? Hvorfor /hvorfor ikke?
e Hvad betyder antallet af klynger?

e Hvilke praktiske implikationer kan K-means have?

Matematikken bag K-means

K-means virker som en smart algoritme - men det store spgrgsmal er vel:
Hvorfor virker dette?

Ideen bag K-means er at uddelegere en raekke observationer x1,xo,...,x;
til klynger saledes, at afstanden til den nsermeste vektor py er minimeret.

Opgave 1.4
Teori: Snak med din sidemand om fglgende:
e Hvorfor giver K-means intuitivt mening?

For at forklare hvorfor K-means virker matematisk, sa defineres folgende:
Lad z;; beskrive, at en observation ¢ tilhgrer en klynge k. Der gaelder saledes,
at hvis z;; = 1, sa tilhgrer observation x; til klyngen k. z;, = 0 betyder, at
observationen ikke tilhgrer klynge h, hvor der galder at h # k.

Vi kan dermed opstille fglgende udtryk, som beregner fejlen i K-means.

N K
2
E=Y % zllz — il (1.1)

i=1 k=1

Algoritmen gar ud pa at finde de bedst mulige z;; 0g g, som vil minimere
E

I trin 1 af algoritmen vil man uddele de forskellige dataseet i klynger. Vi har
dermed faste pi og skal minimere z;;. For at minimere z;;, vil vi, for hver
observation 1, veelge z;, sdledes at:

K

2
Z zik |2 — pgll
k=1
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minimeres.

Dette kan ogsa opstilles som en funktion, der ser saledes ud:

1 if k= argminy, [lz; — |3
Zik = .
0 otherwise

I trin 2 af algoritmen vil man udregne et nyt centrum for hver klynge og
her er z;;, fast.

N

Vi B =2 zip (xi — ) (1.2)
i—1

Vi kan isolere uy ved at seette (1.2) lig med 0, da vi gerne vil have, at der
ikke er nogen eendring. Vi far dermed fglgende:

N
D i1 ZikTi
==
Zi:1 Zik
Dette udtryk beskriver, at centrum for hver klynge er summen af observa-

tioner i klyngen over antallet af observationer i hver klynge; altsd gennem-
snittet af observationer til klyngen &

Ky =

Vi kan dermed se, at trin 1 og trin 2 i algoritmen medfgrer, at £ minimeres
- og det er derfor K-means virker.

Opgave 1.5

Isolér py i (1.2). Benyt evt. folgende regneregler:

Y. C-fn)=C->_ f(n)

Y f)+) gn) = (f(n) +g(n))

n=s n=s
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5 Supervised maskinleering

Supervised maskinleering minder meget om den made mennesker leerer pa.
Algoritmerne vil prgve at gaette, hvad det rigtige svar er. Eksempel i klas-
sificering: Identificere en hund, nar man far et billede af en hund. Hvis
algoritmen geetter rigtigt, s4 beholder vi den, som den er, men hvis den
geetter forkert, sa laver vi en lille justering, der far den til at give et bed-
re gt naste gang. Kort sagt kan alle supervised maskinleeringsalgoritmer
reduceres til fglgende ligning;:

f(X)=Y

Hvor X er input data, og Y er, hvad vi prgver klassificere. Hvis X ek-
sempelvis er et billede, sd kan Y veere, hvad det er et billede af. f() er en
matematisk funktion, som giver Y, nar den far X input. Problemet er, at vi
ikke kender f(), og vi er for dovne til manuelt at formulere den - kort sagt:
vi skal leere f().

Maéaden vi leerer pa er at minimere en objektiv funktion eller en fejlfunk-
tion. Den mest almindelige objektive funktion ser sddan ud:

n

LXY) = -3 () — )
(2
Her ses det tydeligt, at hvis f(X) =Y, sa er L(X,Y) = 0. Dette indikerer,
at vi laver en perfekt klassifikation, og at der ikke er nogen grund til at sendre
algoritmen. Der bemeerkes desuden, at hvis veerdien for f(X), og hvad vi
gnsker at klassificere Y, har en stor differens, sa vil f(X) — Y, resultere i
et tal, som er stort, hvis fejlen er stor. Hvis malet er at klassificere katte og
hunde kan man lade én veere 0 og den anden 1. I sa fald er L(X,Y) = 0,

hvis vi geetter rigtigt, og L(X,Y) =1 hvis vi gaetter forkert.

Perceptronen

For at give en forstaelse af, hvad neurale netveerk er, sa vil vi fokusere pa
at lere perceptron algoritmen. Kort sagt kan perceptronen anses som et
neutralt netveerk med en enkelt neuron.
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Definition 5.1. Perceptronen bestar af ligningen:

Y=b+> Wiz

W er et antal veegte, som vi gnsker at leere. x; er en attribut fra vores input
data. b er kendt, som en bias. b kan forstas som en ekstra attribut til vores
datasaet, som altid er 1. Hvis vi har n attributter, sa skal vi leere n + 1
vaegte, hvor den sidste veegt vil veere b = w(n + 1) - 1.

Leering

Vi gnsker at finde et antal veegte W, som minimerer vores objektive funk-
tion.

Saetning 5.2. For en perceptron geelder det, at vi kan finde den optimale
lpsning ved at opstille den objektive funktion og lgse udtrykket for W og b:

9 1 & - ?
0= szz: <b+zi:Wj - T —y)

Dette vil resultere i et ligningssystem med n + 1 ligninger med m + 1
ubekendte, hvor n er antal veegte, og m er antal datapunkter. Nar man
laver mere komplicerede algoritmer kan man have millioner af veegte med
hundredtusindvis af datapunkter, hvilket medfgrer, at man hurtigt lgber tor
for hukommelse pé selv de bedste computere.

Problemet med den optimale lgsning er ogsa, at den kan overfitte pa
treeningssaettet. Mange algoritmer vil klare sig bedre pa et testset, hvis
de bliver stoppet fgr de nar deres optimale lgsning. Derfor vil vi i stedet
implementere en metode kendt som stokastisk gradient nedstigning.

Definition 5.3. Update funktionen for veegtenden er givet som:
WH=W-\- Ay

A er kendt som leeringsraten. En for lav A gor, at traeningen tager leengere tid,
hvorimod en for hgj A ggr treeningen ustabil, og kan forhindre, at treeningen
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overhovedet sker. Ay er gradienten pa veegten. Nar man treener pé et enkelt
datapunkt er den givet som:

Aw =2(y—9)-=
Hvis vi treener pa et batch (flere data punkter) har vi:

2n
Aw == (yi—4i) - mi
w ni(y gi) - x

Bevis. Antag, at vi har en perceptron med 1 veegt. I si fald har vi:
le) 0 2
19 O (0 — wr -
Ay = |:<9‘g/1 (x,y)] — |:31511 (3/ wy Ty b)2 (1.3)
oLz, y) a5y —wi-z1+0b)
Vi lgser hver enkelt veegt via kaedereglen:

0 0
Tm(y—wl-xl—i—b)z:2-(y—w1-ml—l—b)a—wl(wl-xl—&—b))

Her ses det, at (wy - x1 + b) = g, samt at 8%;1(“}1 -x1 4+ b) = x1. Udtrykket
kan derfor reduceres til:

AW1:2'(y—Q)'IL’1

Biasen er:

0 0
%(y—wl-x1+b)2:2-(y—w1-x1+b)%(w1-x1+b))

Med 9b(w; - 1 + b) = 1 kan vi reducere til:

Apy=2-(y—19)



6. MASKINLARINGSBIBLIOTEKER 13

Algorithm 2 Perceptron

XY = load data

W = np.zeros(len[X[0]]+1)

I = antal iterationer

A = leeringsraten

SidsteCenter = np.empty((K,dimensioner))

for idx, xi in enumuerate(x) do
prediction = np.dot(W][1:], xi) + W|0]
update = np.array(A * (Y|[idx| - prediction))
W][1:] += update * xi
W/[0] += update

Opgave 1.6

Implementér perceptron algoritmen pa sandwich datasaettet med attribut-
terne kulhydrater og meengden af kalorier til at forudsige, om noget er
en salat eller en sandwich.

Opgave 1.7

Implementér perception pa MNIST datasasettets 784 attributter. Fa den til
at kende forskellen pa 1 og 0.

6 Maskinleseringsbiblioteker

Folk, der laver datavidenskab og maskinleering, er ofte ikke de bedste pro-
grammgrer. Selvom mange udvikler deres egne algoritmer, sa vil de fleste
datavidenskabs-job handle om at bruge den rigtige algoritme til at lgse et
nyt klassificerings problem. Derfor findes der et stort antal biblioteker i Pyt-
hon saledes, at man kan kgre algoritmerne, hvis bare man ved hvordan man
bruger dem.
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Scikit-learn

Et biblotek, som vi skal arbejde med, er scikit-learn, der et open source og
drevet af faellesskabet. Sckikit-learn indeholder alle de algoritmer, som man
ville stgde pa i et introduktionskursus til maskinleering og mange flere. Do-
kumentationen til alle algoritmerne kan findes pa https://scikit-learn.org/.

Separering af test- og traeningsdata

For at I er klar til at klassificere enhver form for data, er der dog en ting, som
vi har glemt at leere jer. Selvom det neesten er det vigtigste, s har vi ikke
snakket om, hvordan man separerer treenings- og testdata. Indtil videre har
vi lavet algoritmer, som laver en god model af treeningsdata. Spgrgsmalet
er, hvad der sker, nar den ser et nyt datapunkt, som den ikke har set for?
De fleste algoritmer vil have en meget darlig performance pa deres testseet,
selvom de har en god performance pa deres traeningsseet. Ironisk nok sa vil
meget avancerede algoritmer ofte fa en darligere performance pa deres test-
st end simple algoritmer grundet overfitting. En maskinleeringsalgoritme
bgr altid vurderes pé dens performance pa testsattet, eftersom vi gnsker en
algoritme, der kan genkende ting, som den ikke har set fgr.

Saetning 6.1. Som en tommelfinger regel vil man bruge 80% af sin data
som treeningsdata og 20% som testdata.

Opgave 1.8

Opdél dit MNIST dataseet i et testseet og et treeningsseet via Sci-kit learn.

Opgave 1.9

Find K-means og perceptronen pa sci-kit learn og lav gveleserne og|L.2
med sci-kit learn.
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Opgave 1.10

Find en supervised algoritme pa sci-kit learn, som vi ikke har gennemgaet.
Traen den pa dit MNIST treeningsseet og test den pa testseettet.

Dyb leering

Der findes mange algoritmer, som kan lave supervised maskinleering, men
Neurale Netvaerk er klart de mest populaere grundet deres evne til at leere
naesten alt, hvis de er dybe nok og har nok data. Neurale netvaerk er bygget
af forbundne lag med et vist antal neuroner, hvor hver neuron ligner en
perceptron. Antallet af neuroner bestemmer, hvor godt netveerket er, men
hvis der ikke er nok treeningsdata, sa risikerer du at overfitte.

Perceptronen kan blive set som et neutralt netveerk med ét lag. For at
lave neurale netveerk med flere lag kan vi bruge et bibliotek, som auto-
matisk udregner gradienten. Biblioteker har ogsa mange forskellige typer
lag, sasom convolutional lag, der kan bruges pa billeder og reccurent lag,
som har hukommelse. De to mest populeere biblioteker hedder Pythorch og
TensorFlow.

Opgave 1.11

Implementér en perceptron via Pythorch. Brug funktionen .backward til at
udregne 0,

Opgave 1.12

Implementér et mindre neutralt netveerk via pytorch.
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