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1 Introduktion

Man kan nogle gange blive træt af at kode og ende med at tænke: “Kunne
computeren ikke selv kode det hele for mig?"”, og så er det jo godt, at der
findes maskinlæring, da man med maskinlæring kan lære computeren at ko-
de dine funktioner og algoritmer for dig, se eksempelvis: GitHub Copilot.
Men hvordan virker det, og hvad er maskinlæring egentlig?

Maskinlæring dækker over en række metoder, hvorved computeren selv kan
lære at finde mønstre i store mængder data. Dette kan benyttes til både
klassifikation; eksempelvis at klassificere om en person har en bestemt syg-
dom eller ej, og til at lave forudsigelser om fremtiden; såsom hvordan vejret
kommer til at se ud i morgen.

Udgangspunktet for maskinlæring er data - en rigtig stor mængde data -
og derfor er maskinlæring også kendt som datavidenskab. I medierne er
maskinlæring ofte kendt som kunstig intelligens (AI), og selvom der findes
kunstig intelligens, som ikke bygger på maskinlæring, så har de sidste 20 års
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fremskridt i kunstig intelligens hovedsageligt været inden for maskinlæring.

I dette forløb vil vi kigge på de to hovedkategorier inden for maskinlæ-
ring: Supervised maskinlæring og unsupervised maskinlæring. Vi vil møde
eksempler på kendte algoritmer, som bliver benyttet inden for begge hoved-
kategorier og vi vil kigge på teorien, der danner grundlaget for algoritmerne.

Figur 1.1: XKCD 1838
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2 Data

Maskinlæring er en underdel af kunstig intelligens. Kunstig intelligens er
ofte kendt som datavidenskab, da det ofte handler mere om data end om
algoritmen. Datavidenskabsfolk har et ordsprog: “Det er bedre at have et
godt datasæt og en dårlig algoritme, end det er at have en god algoritme
og et dårligt datasæt”. Data kan i sig selv beskrives som alt, der kan kvan-
tificeres med tal. Eftersom stort set alt kan beskrives med tal, så gør det
datavidenskab til en videnskabelig disciplin, der kan have opgaver fra alle
andre videnskaber.

Ét af de datasæt, som vi vil arbejde med her på campen, indeholder næ-
ringsdata fra mad serveret på fastfoodkæden Subway’s restauranter. Data-
sættet indeholder mange forskellige attributter, og vi vil fokusere på data
om mængden af kulhydrater og mængden af kalorier. Årsagen til, at vi fo-
kuserer på disse to attributter, er, at hver attribut kan ses som en dimension
og for at give en intuitiv ide af, hvordan algoritmen virker, så vil vi lave 2D
plots. Hvis algoritmen er ordentligt implementeret, så kan den finde sam-
menhæng i data med flere dimensioner. Dette er en fordel, da man med data
i forhold til mennesker typisk arbejder med data i mange dimensioner.

Det andet datasæt, som vi skal kigge på, hedder MNIST og dette datasæt
består af billeder af håndskrevne tal.

For at kunne lave maskinlæring på billeder, så skal vi forstå, hvordan,
billeder bliver repræsenteret som data i en computer. Billeder i MNIST
datasættet har 28X28 pixels og er i sort-hvid. Af denne grund kan et MNIST
billede blive repræsenteret med en liste af 784 tal mellem 0 og 255, hvor 0
betyder, at en pixel er helt hvid og 255 betyder, at den er helt sort.

3 Intro til biblioteker

Når man skriver kode, så kan man nogle gange have brug for funktioner,
der ikke er en del af den normale Python pakke. I stedet for at skrive disse
funktioner fra bunden, så kan man importere andres kode og benytte dem



4 KAPITEL 1. MASKINLÆRING

Figur 1.2: Eksempler af billeder i MNIST datasættet

i sin egen kode. Dette kaldes biblioteker. De mange ekstra biblioteker er én
af de største fordele ved at bruge Python.

Numpy

Det mest brugte bibliotek, når man laver datavidenskab, kaldes numpy. numpy
indeholder og giver en masse masse matematiske funktioner, som man også
ville kunne finde i ethvert andet CAS værktøj. Måden man importerer numpy
er via kommandoen:

1 import numpy as np
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“as np” sørger for, at man kan benytte forkortelsen np som et synonym
for numpy. For at få adgang til funktionerne i numpy behøver man eksempelvis
kun at skrive:

1 np.function ()

i stedet for at skrive: numpy.function() hele tiden.
Derudover introducerer numpy en særlig type liste, som man kan anvende til
lineær algebra. Listen kaldes et numpy array. Et numpy array adskiller sig
fra en almindelig Python liste ved, at et numpy array fungerer ligesom en
matematisk matrix.
En matrix er et rektangulært skema af tal. Forskellen på et numpy array og
en almindelig liste i Python kan ses i følgende eksempel:
Eksempel
[1,2]*2 −→ [1,2,1,2]
np.array([1,2])*2 −→ np.array([2,4])

unfML

Vi har lavet nogle hjælpefunktioner således, at i hurtigt kan gå i gang med
at lave maskinlæring. Funktionerne ligger i biblioteket unfML og biblioteket
kan importeres på følgende måde:

1 import unfML

Datasættet til maskinlæringsopgaverne kan nu fås ved hjælp af funktio-
nen unfML.data(opgavenummer). For unsupervised learning fås X, for su-
pervised fås X og Y. For at evaluere din model benyttes kommandoen:
unfML.eval(opgavenummer, modeloutput) eller unfML.plot(opgavenummer,
modeloutput) for en grafisk illustration. Modellens output vil for K-means
være en liste K centrums og for perceptronen vil det være W.
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4 Unsupervised maskinlæring og K-means
algoritme

Unsupervised maskinlæring dækker over en række metoder til at finde møn-
stre i data. Metoderne bliver givet en række observationer uden at give et
label, der siger, hvad det rigtige svar er, da vi ikke nødvendigvis på forhånd
ved, hvad det er vi leder efter. Typiske opgaver i unsupervised maskinlæ-
ring er; at klassificere data i forskellige grupper (clustering), finde afvigelser
(outlier detection) eller finde sammenhænge, såsom hvis en person køber
havregryn, så køber de typisk også mælk (association mining). Vi vil foku-
sere på en algoritme, K-means, som benyttes til klassificering.

K-means

K-means er en simpel metode til at finde klynger i store mængder data. Her
kan en klynge beskrives, som gruppe datapunkter, der ligger tæt på hinan-
den og derfor hører sammen. Algoritmen starter med at vælge K tilfældige
punkter som centrum for klynger; derefter kører algoritmen i et loop, som
har to trin.

• Trin 1: K klynger udvælges; for hvert datapunkt udregnes den eukli-
deafstand (Pythagoras’ læresætning) til ethvert K centrum. Derefter
indsætter man punktet i den klynge, hvis centrum punktet er tættest
på.

• Trin 2: For hver klynge udregnes et nyt centrum ved at tage middel-
værdien af alle punkter.

K-means konvergerer, hvilket vil sige, at på et tidspunkt ændrer resul-
tatet sig ikke længere, selvom man fortsætter loopet. Når dette sker kan
algoritmen stoppes, og de resulterende klynger er resultatet af klassificerin-
gen.
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Algorithm 1 K-means
X = load data
K = antal klustere
punkter,demensioner=np.shape(x)
Center = np.array(random.sample(X,K)) #tilfældige valgte punkter
SidsteCenter = np.empty((K,demensioner))
while Center != SidsteCenter do

klusters=[ [] for _ in range(K)]
SidsteCenter = Center.copy()
for p in range(punkter) do

afstand=[]
for k in range(K) do

afstand.append(np.sqrt(np.sum((X[p]-center[k])**2)))
end for
klusters[np.argmin(afstand)].append(X[p])

end for
for k in range(K) do

center[k,:]=np.mean(klusters[k],axis=0)

Opgave 1.1

Implementér K-means algoritmen på Subway datasættet, og plot resultatet
fra 3 klynger. For bedre forståelse og debugging kan man plotte datasættet
under hver iteration. Efter 3 klynger er plottet; giv plot funktionen argu-
mentet sande=True for at se, hvilke typer mad, der gemmer sig i datasættet.

Opgave 1.2

Få din K-means algoritme til at køre på MNIST datasættet med 10 klynger.
Plot de 10 klynger.

Opgave 1.3

Teori: Snak med din sidemand om følgende:
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• Giver K-means det samme svar hver gang? Hvorfor/hvorfor ikke?

• Hvad betyder antallet af klynger?

• Hvilke praktiske implikationer kan K-means have?

Matematikken bag K-means

K-means virker som en smart algoritme - men det store spørgsmål er vel:
Hvorfor virker dette?
Ideen bag K-means er at uddelegere en række observationer x1, x2, . . . , xi
til klynger således, at afstanden til den nærmeste vektor µk er minimeret.

Opgave 1.4

Teori: Snak med din sidemand om følgende:

• Hvorfor giver K-means intuitivt mening?

For at forklare hvorfor K-means virker matematisk, så defineres følgende:
Lad zik beskrive, at en observation i tilhører en klynge k. Der gælder således,
at hvis zik = 1, så tilhører observation xi til klyngen k. zih = 0 betyder, at
observationen ikke tilhører klynge h, hvor der gælder at h ̸= k.
Vi kan dermed opstille følgende udtryk, som beregner fejlen i K-means.

E =
N∑
i=1

K∑
k=1

zik ∥xi − µk∥
2
2 (1.1)

Algoritmen går ud på at finde de bedst mulige zik og µk, som vil minimere
E

I trin 1 af algoritmen vil man uddele de forskellige datasæt i klynger. Vi har
dermed faste µk og skal minimere zik. For at minimere zik vil vi, for hver
observation i, vælge zik, således at:

K∑
k=1

zik ∥xi − µk∥
2
2
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minimeres.

Dette kan også opstilles som en funktion, der ser således ud:

zik =

{
1 if k = argminh ∥xi − µh∥

2
2

0 otherwise

I trin 2 af algoritmen vil man udregne et nyt centrum for hver klynge og
her er zik fast.

∇µk
E = 2

N∑
i=1

zik (xi − µk) (1.2)

Vi kan isolere µk ved at sætte (1.2) lig med 0, da vi gerne vil have, at der
ikke er nogen ændring. Vi får dermed følgende:

µk =

∑N
i=1 zikxi∑N
i=1 zik

.

Dette udtryk beskriver, at centrum for hver klynge er summen af observa-
tioner i klyngen over antallet af observationer i hver klynge; altså gennem-
snittet af observationer til klyngen k

Vi kan dermed se, at trin 1 og trin 2 i algoritmen medfører, at E minimeres
- og det er derfor K-means virker.

Opgave 1.5

Isolér µk i (1.2). Benyt evt. følgende regneregler:

t∑
n=s

C · f(n) = C ·
t∑

n=s

f(n)

t∑
n=s

f(n) +

t∑
n=s

g(n) =

t∑
n=s

(f(n) + g(n))
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5 Supervised maskinlæring

Supervised maskinlæring minder meget om den måde mennesker lærer på.
Algoritmerne vil prøve at gætte, hvad det rigtige svar er. Eksempel i klas-
sificering: Identificere en hund, når man får et billede af en hund. Hvis
algoritmen gætter rigtigt, så beholder vi den, som den er, men hvis den
gætter forkert, så laver vi en lille justering, der får den til at give et bed-
re gæt næste gang. Kort sagt kan alle supervised maskinlæringsalgoritmer
reduceres til følgende ligning:

f(X) = Y

Hvor X er input data, og Y er, hvad vi prøver klassificere. Hvis X ek-
sempelvis er et billede, så kan Y være, hvad det er et billede af. f() er en
matematisk funktion, som giver Y , når den får X input. Problemet er, at vi
ikke kender f(), og vi er for dovne til manuelt at formulere den - kort sagt:
vi skal lære f().

Måden vi lærer på er at minimere en objektiv funktion eller en fejlfunk-
tion. Den mest almindelige objektive funktion ser sådan ud:

L(X,Y ) =
1

n

n∑
i

(f(xi)− yi)
2

Her ses det tydeligt, at hvis f(X) = Y , så er L(X,Y ) = 0. Dette indikerer,
at vi laver en perfekt klassifikation, og at der ikke er nogen grund til at ændre
algoritmen. Der bemærkes desuden, at hvis værdien for f(X), og hvad vi
ønsker at klassificere Y , har en stor differens, så vil f(X) − Y , resultere i
et tal, som er stort, hvis fejlen er stor. Hvis målet er at klassificere katte og
hunde kan man lade én være 0 og den anden 1. I så fald er L(X,Y ) = 0,
hvis vi gætter rigtigt, og L(X,Y ) = 1 hvis vi gætter forkert.

Perceptronen

For at give en forståelse af, hvad neurale netværk er, så vil vi fokusere på
at lære perceptron algoritmen. Kort sagt kan perceptronen anses som et
neutralt netværk med en enkelt neuron.
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Definition 5.1. Perceptronen består af ligningen:

Ŷ = b+
∑
i

Wi · xi

W er et antal vægte, som vi ønsker at lære. xi er en attribut fra vores input
data. b er kendt, som en bias. b kan forstås som en ekstra attribut til vores
datasæt, som altid er 1. Hvis vi har n attributter, så skal vi lære n + 1
vægte, hvor den sidste vægt vil være b = w(n+ 1) · 1.

Læring

Vi ønsker at finde et antal vægte W , som minimerer vores objektive funk-
tion.

Sætning 5.2. For en perceptron gælder det, at vi kan finde den optimale
løsning ved at opstille den objektive funktion og løse udtrykket for W og b:

0 =
∂

∂W

1

m

m∑
i

(
b+

n∑
i

Wj · xj − y

)2

Dette vil resultere i et ligningssystem med n + 1 ligninger med m + 1
ubekendte, hvor n er antal vægte, og m er antal datapunkter. Når man
laver mere komplicerede algoritmer kan man have millioner af vægte med
hundredtusindvis af datapunkter, hvilket medfører, at man hurtigt løber tør
for hukommelse på selv de bedste computere.

Problemet med den optimale løsning er også, at den kan overfitte på
træningssættet. Mange algoritmer vil klare sig bedre på et testset, hvis
de bliver stoppet før de når deres optimale løsning. Derfor vil vi i stedet
implementere en metode kendt som stokastisk gradient nedstigning.

Definition 5.3. Update funktionen for vægtenden er givet som:

W+1 = W · λ ·∆W

λ er kendt som læringsraten. En for lav λ gør, at træningen tager længere tid,
hvorimod en for høj λ gør træningen ustabil, og kan forhindre, at træningen
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overhovedet sker. ∆W er gradienten på vægten. Når man træner på et enkelt
datapunkt er den givet som:

∆W = 2(y − ŷ) · x

Hvis vi træner på et batch (flere data punkter) har vi:

∆W =
2

n

n∑
i

(yi − ŷi) · xi

Bevis. Antag, at vi har en perceptron med 1 vægt. I så fald har vi:

∆W =

[ ∂
∂W1

L(x, y)
∂
∂bL(x, y)

]
=

[ ∂
∂w1

(y − w1 · x1 + b)2

∂
∂b(y − w1 · x1 + b)2

]
(1.3)

Vi løser hver enkelt vægt via kædereglen:

∂

∂w1
(y − w1 · x1 + b)2 = 2 · (y − w1 · x1 + b)

∂

∂w1
(w1 · x1 + b))

Her ses det, at (w1 · x1 + b) = ŷ, samt at ∂
∂w1

(w1 · x1 + b) = x1. Udtrykket
kan derfor reduceres til:

∆W1 = 2 · (y − ŷ) · x1

Biasen er:

∂

∂b
(y − w1 · x1 + b)2 = 2 · (y − w1 · x1 + b)

∂

∂b
(w1 · x1 + b))

Med ∂b(w1 · x1 + b) = 1 kan vi reducere til:

∆b = 2 · (y − ŷ)
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Algorithm 2 Perceptron
X,Y = load data
W = np.zeros(len[X[0]]+1)
I = antal iterationer
λ = læringsraten
SidsteCenter = np.empty((K,dimensioner))
for idx, xi in enumuerate(x) do

prediction = np.dot(W[1:], xi) + W[0]
update = np.array(λ * (Y[idx] - prediction))
W[1:] += update * xi
W[0] += update

Opgave 1.6

Implementér perceptron algoritmen på sandwich datasættet med attribut-
terne kulhydrater og mængden af kalorier til at forudsige, om noget er
en salat eller en sandwich.

Opgave 1.7

Implementér perception på MNIST datasættets 784 attributter. Få den til
at kende forskellen på 1 og 0.

6 Maskinlæringsbiblioteker

Folk, der laver datavidenskab og maskinlæring, er ofte ikke de bedste pro-
grammører. Selvom mange udvikler deres egne algoritmer, så vil de fleste
datavidenskabs-job handle om at bruge den rigtige algoritme til at løse et
nyt klassificerings problem. Derfor findes der et stort antal biblioteker i Pyt-
hon således, at man kan køre algoritmerne, hvis bare man ved hvordan man
bruger dem.
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Scikit-learn

Et biblotek, som vi skal arbejde med, er scikit-learn, der et open source og
drevet af fællesskabet. Sckikit-learn indeholder alle de algoritmer, som man
ville støde på i et introduktionskursus til maskinlæring og mange flere. Do-
kumentationen til alle algoritmerne kan findes på https://scikit-learn.org/.

Separering af test- og træningsdata

Før at I er klar til at klassificere enhver form for data, er der dog en ting, som
vi har glemt at lære jer. Selvom det næsten er det vigtigste, så har vi ikke
snakket om, hvordan man separerer trænings- og testdata. Indtil videre har
vi lavet algoritmer, som laver en god model af træningsdata. Spørgsmålet
er, hvad der sker, når den ser et nyt datapunkt, som den ikke har set før?
De fleste algoritmer vil have en meget dårlig performance på deres testsæt,
selvom de har en god performance på deres træningssæt. Ironisk nok så vil
meget avancerede algoritmer ofte få en dårligere performance på deres test-
sæt end simple algoritmer grundet overfitting. En maskinlæringsalgoritme
bør altid vurderes på dens performance på testsættet, eftersom vi ønsker en
algoritme, der kan genkende ting, som den ikke har set før.

Sætning 6.1. Som en tommelfinger regel vil man bruge 80% af sin data
som træningsdata og 20% som testdata.

Opgave 1.8

Opdél dit MNIST datasæt i et testsæt og et træningssæt via Sci-kit learn.

Opgave 1.9

Find K-means og perceptronen på sci-kit learn og lav øveleserne 1.7 og 1.2
med sci-kit learn.
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Opgave 1.10

Find en supervised algoritme på sci-kit learn, som vi ikke har gennemgået.
Træn den på dit MNIST træningssæt og test den på testsættet.

Dyb læring

Der findes mange algoritmer, som kan lave supervised maskinlæring, men
Neurale Netværk er klart de mest populære grundet deres evne til at lære
næsten alt, hvis de er dybe nok og har nok data. Neurale netværk er bygget
af forbundne lag med et vist antal neuroner, hvor hver neuron ligner en
perceptron. Antallet af neuroner bestemmer, hvor godt netværket er, men
hvis der ikke er nok træningsdata, så risikerer du at overfitte.

Perceptronen kan blive set som et neutralt netværk med ét lag. For at
lave neurale netværk med flere lag kan vi bruge et bibliotek, som auto-
matisk udregner gradienten. Biblioteker har også mange forskellige typer
lag, såsom convolutional lag, der kan bruges på billeder og reccurent lag,
som har hukommelse. De to mest populære biblioteker hedder Pythorch og
TensorFlow.

Opgave 1.11

Implementér en perceptron via Pythorch. Brug funktionen .backward til at
udregne δw

Opgave 1.12

Implementér et mindre neutralt netværk via pytorch.
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