
An optimal solution for Black Jack
Introduction to Reinforcement learning and control theory 02465

Authors

Andreas Råskov Madsen - s183901

March 22, 2025

Git repostory:
https://gitlab.gbar.dtu.dk/s183901/Black_Jack

https://gitlab.gbar.dtu.dk/s183901/Black_Jack


1 Introduction

This assignment sees Black Jack as a control problem to train a planning agent by
calculating the exact action value, and compare it with agents trained via Monte Carlo
simulation. Thereby I was able to learn the optimal policy for Black Jack (With tho usual
disclaimer that my code and ma thematic is correct). I was also able to significant reduce
computing time, by combining some of the ideas from RL into the planing problem.

1.1 Acknowledgement

I have written my own code (Also for the MC agent) because i want to build a Git hub
that show my coding skill’s, and i had a lot of vacation to practise code. However when that
is said i draw a lot of inspiration from the course code base.

Other inspiration has been found on the python version of Sutton’s [2] code, that can be
found on: https://github.com/ShangtongZhang/reinforcement-learning-an-introduction/
blob/master/chapter05/blackjack.py#L56

I use the Black Jack environment in Open AI gym to train my MC agent, and evaluate
all agent. This environment can be found on: https://github.com/openai/gym/blob/
master/gym/envs/toy_text/blackjack.py

1.2 Motivation

Well the stock trading algorithm didn’t do that well, so now i need to find new creative
ways to earn money (or get a job).

2 Theory

2.1 Finite horizon

A simple prof for the finite horizon problem is that only cards with a value equal or
greater than 1 can be drawn. Thus if we keep drawing cards, we will sooner or later hit a
sum greater than 21.

2.2 Drawing from a fix probability

We are drawing cards from a distribution that don’t change depending on cards drawn
before.

And example is a scenario where the agent draws 22 aces is possible, and thus should
be evaluated when doing a full tree search. Other practical consequences of this method is
in the discussion.

i

https://github.com/ShangtongZhang/reinforcement-learning-an-introduction/blob/master/chapter05/blackjack.py#L56
https://github.com/ShangtongZhang/reinforcement-learning-an-introduction/blob/master/chapter05/blackjack.py#L56
https://github.com/openai/gym/blob/master/gym/envs/toy_text/blackjack.py
https://github.com/openai/gym/blob/master/gym/envs/toy_text/blackjack.py


3 Method

3.1 Planning Agent

The planning agent is doing a full tree search in order to find the value of every state
and every action. Since Black Jack is a final horizon MDP with relatively few states. The
planning agent uses an extended version of the state used internal composed as

Si = (AgentSum,Agentace,DealerSum,DealerAce)

. The agent also uses the Open AI state space defined as

S = (Agentsum, dealerfaceupcard,AgentAce)

. Without terminal states there are 588 internal states and 280 non in the Open AI state
space.

a conversion from S to Si can easily be made, a conversion the other way around is not
needed.

For each state the optimal action is given as:

a = argmax(Qstand(s), Qhit(s))

Evaluating Qstand and Qhit is for this agent two different problems.

3.1.1 Qstand

When the agent stand the state is terminal and the agent can no longer influence the
game. Thus we just need to calculate the value of a Markov chain that will follow the dealers
actions.

The dealer will turn around his hidden card or draw a new card (When every card is
drawn from the same distribution those two cases is identical). The state space then split
to all possible sates we can be in:

Sii = sum(Si, i)

Where i is the value of cards that are possible to be draw in the set (ace to 10) and Sii is
the dealers sum and ace after drawing/turning the card i, The function sum add the value
of i to the dealers sum but can handle counting ace as either 1 or 11, see the function in
planning agent class.

For each Sii a value of the state V (Sii) is found if dealer sum is greater than 17 by
comparing the dealer and agent sum V (Sii) = comp(Sii) (see function comp for details), or
return -1 if the dealer is bust, or the value can be found by calling the function V (Sii) =
Qstand(Sii) recursively until the dealers sum is greater than 17. This can be done because
we have a final horizon problem (else the algorithm would run forever).

Finally for the function Qstand a value returned by the equation:

Qstand(Si) =
∑
i

V (Sii) · p(i)

ii



3.2 MC Agent

3.1.2 Qhit

The hit action like the stand also transform the state from one state to 10 possible
states:

Sii = sum(Si, i)

But this time Sii is refers to the agents part of the state, the agent’s sum and ace.
V (Sii) is -1 if agent sum is over 21, else the state value can be found according to the

MDP properties by:
V (Sii) = max(Qhit(Sii), Qstand(Sii))

Note that we are calling Qhit recursively, thus the final horizon argument should be made
to argue the algorithm would not run infinitely.

The action value returned by Qhit is thus:

Qstand(Si) =
∑
i

V (Sii) · p(i)

3.1.3 Using a bit of learning

The reader may have noted that recursive function is use many times and also that for
each step the tree branches out with a factor of 10. This means really many recursions even if
it stops eventually. In an early version of my code i tried to evaluate the state S(12, 1, T rue)
and it ran for about an hour (This is also the hardest state of the game to evaluate)

However this run time can be significantly reduced by introducing a Q matrix from
reinforcement learning. By saving the values of Qhit(Si) and Qstand(Si) the first time they
are calculated, science we are often getting back to the same states 588 states we can just
get the Q value from memory instead of evaluating it again.

This is best given by an example, imagine an agent going form a sum of 12 and no ace to
a sum of 18, this can be done by by going many ways, a it could draw a 6 or (2,4),(2,2,2),(1,5)
and so on. For each combination the state of 18 would be evaluated, but since drawing a
card does not change the cards distribution the state, the value of 18 would be the same no
matte how the agent got there, thus the agent only need to evaluate it once.

3.2 MC Agent

The MC agent does not have any significant difference from the every visit MC agent,
used in the course, even though i tried to write the code to look more like the pseudo code
in the book: [2]. The original problem was solved with a first visit agent, given the nature
of Black Jack (and other finite horizon problems) returning to a state previous state is not
possible, thus there is no difference between first visit and every visit.

I use epsilon =0.2, i did some pilot study’s with different values without much different
result.

iii



4 Environment/testing

4.1 Planing environment

The planing agent simulate the environment internally. Thus it doesn’t need to play
the game but just iterate over all the 280 possible states, in a Black Jack game.

4.2 RL environment

The MC agent was trained in the same way as done in the course, and by using the
open AI environment

To get an idea of how much train the effect of Monte Carlo sampling 3 experiment was
run. One with 104, 105 and 106 episodes.

4.3 Testing environment

The performance of the found policy was evaluated, by running 105 episode in the open
AI environment, and returning the mean reward.

5 results

Agent planning agent MC 104 MC 105 MC 106

Mean reward -0.04667 -0.08691 -0.05784 -0.04618
Training time <1s 1s 23s 20m 6s

Table 1: Results of testing, run time is evaluated on a Intel i7 processor

Figure 1: Policy of planing agent

iv



Figure 2: Policy after 104 episodes purple is states not visited.

Figure 3: Policy after 105 episodes

Figure 4: Policy after 106 episodes

Note: It should be possible to open and interactive version of all plots if download from
the repository.

v



6 Conclusion

Even though the MC agent with 106 episodes performed slightly better i is not significant
to conclude it’s better.

An other argument for optimally is that i get the same result as [2] except in the state
(12,4,no Ace) however my planing agent claim that both standing and hitting have the action
value -0.22 making it a question of settling ties.

Therefor i would conclude that my planing agent can find the optimal policy. It can also
be concluded that Monte Carlo simulation also will find the close to optimal policy given
enough Episodes.

7 Discussion

7.1 Planing VS Learning

Even though planning seems Superior in a Black Jack problem it has some serious
drawbacks if the state space becomes to big, and more complex solution would be need for
an infinite horizon problem.

Also the code for a planing agent is more complicated to write, and unlike the MC agent
this code can only solve this specific problem.

However from a pedagogical standpoint it help me a lot to solve a problem both at an
control problem and a RL problem.

8 Drawing from a constant distribution

In a real game of Black Jack the card deck is slowly depleted as cards is drawn changing
the probability of drawing the next card. In this assignment and in all both Sutton and
Open AI gym code the distribution does not change. A problem with depleting a deck is
that the problem become more complex, as each combination of card left can be considered
a new state thereby expanding the state space. By using MC it should be possible to find
an average policy on over all likely deck compositions without change the state space, that
policy should correspond with the one found by Thorp [1] i think that’s why Sutton an
Torp, disagree, they are solving two different problems. However here we should note that
this would not be and optimal policy since different deck compositions may require different
policy, further studies should be done by students who wish to rip of casinos.

vi



9 Appendix

(a) Usable Ace (b) No usable Ace

Figure 5: Calculated state value of planing agent

(a) Usable Ace

(b) No usable Ace

Figure 6: Value after 104 episodes

vii



References

(a) Usable Ace (b) No usable Ace

Figure 7: Value after 105 episodes

(a) Usable Ace
(b) No usable Ace

Figure 8: Value after 106 episodes

References

[1] Thorp Edward O. Beat the dealer : a winning strategy for the game of Twenty-One.
Vintage Books, New York, vintage book editions edition, 1966.

[2] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction
second edition. The MIT Press.

viii


	Introduction
	Acknowledgement
	Motivation

	Theory
	Finite horizon
	Drawing from a fix probability

	Method
	Planning Agent
	Qstand
	Qhit
	Using a bit of learning

	MC Agent

	Environment/testing
	Planing environment
	RL environment
	Testing environment

	results
	Conclusion
	Discussion
	Planing VS Learning

	Drawing from a constant distribution
	Appendix
	References

